Local bounds for singular Brascamp–Lieb forms with cubical structure
نویسندگان
چکیده
We prove a range of $$L^p$$ bounds for singular Brascamp–Lieb forms with cubical structure. pass through sparse and local bounds, the latter proved by an iteration Fourier expansion, telescoping, Cauchy–Schwarz inequality. allow $$2^{m-1}<p\le \infty $$ m dimension cube, extending earlier result that required $$p=2^m$$ . The threshold $$2^{m-1}$$ is sharp in our theorems.
منابع مشابه
Lower Bounds for Cubical Pseudomanifolds
It is verified that the number of vertices in a d-dimensional cubical pseudomanifold is at least 2d+1. Using Adin’s cubical h-vector, it is established that the cubical Generalized Lower Bound Conjecture (GLBC) holds for all 4-spheres, as well as some special cases of the cubical GLBC in higher dimensions.
متن کاملStrong exponent bounds for the local Rankin-Selberg convolution
Let $F$ be a non-Archimedean locally compact field. Let $sigma$ and $tau$ be finite-dimensional representations of the Weil-Deligne group of $F$. We give strong upper and lower bounds for the Artin and Swan exponents of $sigmaotimestau$ in terms of those of $sigma$ and $tau$. We give a different lower bound in terms of $sigmaotimeschecksigma$ and $tauotimeschecktau$. Using the Langlands...
متن کاملUPPER BOUNDS FOR FINITENESS OF GENERALIZED LOCAL COHOMOLOGY MODULES
Let $R$ be a commutative Noetherian ring with non-zero identity and $fa$ an ideal of $R$. Let $M$ be a finite $R$--module of finite projective dimension and $N$ an arbitrary finite $R$--module. We characterize the membership of the generalized local cohomology modules $lc^{i}_{fa}(M,N)$ in certain Serre subcategories of the category of modules from upper bounds. We define and study the properti...
متن کاملFinite element differential forms on cubical meshes
We develop a family of finite element spaces of differential forms defined on cubical meshes in any number of dimensions. The family contains elements of all polynomial degrees and all form degrees. In two dimensions, these include the serendipity finite elements and the rectangular BDM elements. In three dimensions they include a recent generalization of the serendipity spaces, and new H(curl)...
متن کاملCubical Version of Combinatorial Differential Forms
The theory of combinatorial differential forms is usually presented in simplicial terms. We present here a cubical version; it depends on the possibility of forming affine combinations of mutual neighbour points in a manifold, in the context of synthetic differential geometry.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Zeitschrift
سال: 2022
ISSN: ['1432-1823', '0025-5874']
DOI: https://doi.org/10.1007/s00209-022-03148-8